Wednesday 28 September 2016

Traveling through the body with graphene

more »
Researchers have succeeded to place a layer of graphene on top of a stable fatty lipid monolayer, for the first time. Surrounded by a protective shell of lipids graphene could enter the body and function as a versatile sensor. The results are the first step towards such a shell, say authors of a new report.
via Science Daily

Mass producing graphene using microwaves

more »
A simple new method for producing large quantities of the promising nanomaterial graphene has been discovered by an international team of researchers.
via Science Daily

Quantum metal model system

more »
The profound effects of electron interactions on the flow of electric currents in metals have been revealed by new research. Controlling currents of strongly interacting electrons is critical to the development of tomorrow's advanced microelectronics systems, including spintronics devices that will process data faster, use less power than today's technology, and operate in conditions where quantum effects predominate.
via Science Daily

Rosetta on the Way to Crash Into a Comet

more »
As the European Space Agency prepares to bring its most ambitious mission to an end, data gathered by the spacecraft will help scientists understand how Earth and other planets formed.
via New York Times

A perfect sun-storm

more »
A geomagnetic storm on January 17, 2013, provided unique observations that finally resolved a long-standing scientific problem. For decades, scientists had asked how particles hitting Earth's magnetosphere were lost. A likely mechanism involved certain electromagnetic waves scattering particles into the Earth's atmosphere. More recently, another mechanism was proposed that caused particles to be lost in interplanetary space. Scientists recently found that both mechanisms play a role affecting particles at different speeds.
via Science Daily
Zazzle Space Exploration market place

Australian technology installed on world’s largest single-dish radio telescope

more »
The world’s largest filled single-dish radio telescope has launched, and it relies on a piece of West Australian innovation. The telescope -- known as FAST -- uses a data system developed at the International Centre for Radio Astronomy in Perth and the European Southern Observatory to manage the huge amounts of data it generates.
via Science Daily
Zazzle Space Exploration market place

Looking for charming asymmetries

A view of the LHCb experimental cavern. (Image: Maximilien Brice/CERN)

One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter.

CERN’s LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery.

At the VIII International Workshop on Charm Physics, which took place in Bologna earlier this month, the LHCb Collaboration presented the most precise measurement to date of a phenomenon called Charge-Parity (CP) violation among particles that contain a charm quark.

CP symmetry states that laws of physics are the same if a particle is interchanged with its anti-particle (the “C” part) and if its spatial coordinates are inverted (P). The violation of this symmetry in the first few moments of the universe is one of the fundamental ingredients to explain the apparent cosmic imbalance in favour of matter.

Until now, the amount of CP violation detected among elementary particles can only explain a tiny fraction of the observed matter-antimatter asymmetry. Physicists are therefore extending their search in the quest to identify the source of the missing anti-matter.

The LHCb collaboration made a precise comparison between the decay lifetime of a particle called a D0 meson (formed by a charm quark and an up antiquark) and its anti-matter counterpart D0 (formed by an charm antiquark and up quark), when decaying either to a pair of pions or a pair of kaons. Any difference in these lifetimes would provide strong evidence that an additional source of CP violation is at work. Although CP violation has been observed in processes involving numerous particles that contain b and s quarks, the effect is still unobserved in the charm-quark sector and its magnitude is predicted to be very small in the Standard Model.

Thanks to the excellent performance of CERN’s Large Hadron Collider, for the first time the LHCb collaboration is accumulating a dataset large enough to access the required level of precision on CP-violating effects in charm-meson decays. The latest results indicate that the lifetimes of the D0 and D0  particles, measured using their decays to pions or kaons, are still consistent, thereby demonstrating that any CP violation effect that is present must indeed be at a tiny level.

However, with many more analyses and data to come, LHCb is looking forward to delving even deeper into the possibility of CP violation in the charm sector and thus closing in on the universe’s missing antimatter. “The unique capabilities of our experiment, and the huge production rate of charm mesons at the LHC, allow us to perform measurements that are far beyond the sensitivity of any previous facility,” says Guy Wilkinson, spokesperson for the LHCb collaboration. “However, nature demands that we dig even deeper in order to uncover an effect. With the data still to come, we are confident of responding to this challenge,” he adds.

More information is available on the LHCb website


via CERN: Updates for the general public
http://home.cern/about/updates/2016/09/looking-charming-asymmetries

NGC 3576: The Statue of Liberty Nebula

more »



Zazzle Space Gifts for young and old

First quantum photonic circuit with an electrically driven light source

more »
Whether for use in safe data encryption, ultrafast calculation of huge data volumes or so-called quantum simulation of highly complex systems: Optical quantum computers are a source of hope for tomorrow's computer technology. For the first time, scientists now have succeeded in placing a complete quantum optical structure on a chip. This fulfills one condition for the use of photonic circuits in optical quantum computers.
via Science Daily

What Mars Mission Might Look Like

more »
SpaceX, Elon Musk’s rocket company, released a video simulation of a journey to Mars. His plan is for spacecraft that would take 100 passengers to the planet.
via New York Times