Friday 9 May 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells

original post »

Using nanodot technology, Berkeley Lab researchers have demonstrated the first size-based form of chromatography that can be used to study the membranes of living cells. This unique physical approach to probing cellular membrane structures can reveal information critical to whether a cell lives or dies, remains normal or turns cancerous, that can’t be obtained through conventional microscopy. “We’ve developed membrane-embedded nanodot array platforms that provide a physical means to both probe and manipulate membrane assemblies, including signaling clusters, while they are functioning in the membrane of a living cell,” says Jay Groves, a chemist with Berkeley Lab’s Physical Biosciences Division, who led this research. Groves, who is also a professor with the University of California (UC) Berkeley’s Chemistry Department, and a Howard Hughes Medical Institute (HHMI) investigator, is a recognized leader in developing techniques for studying the impact of spatial patterns on living cells. The live-cell supported synthetic membranes he and his group have been developing are constructed out of lipids and assembled onto a substrate of solid silica. These membranes are being used to determine how living cells not only interact with their environment through chemical signals but also through physical force and spatial patterns. “We call our approach the

The post Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells has been published on Technology Org.

 
#materials 
See Zazzle gifts tagged with 'science'

No comments:

Post a Comment