Federal investigators said the manufacturer failed to consider that a pilot might prematurely unlock a mechanism for the space plane’s descent.
via New York Times
There are advances being made almost daily in the disciplines required to make space and its contents accessible. This blog brings together a lot of that info, as it is reported, tracking the small steps into space that will make it just another place we carry out normal human economic, leisure and living activities.
Hydraulic fracturing, or “fracking,” produces a lot of wastewater. Drilling one well requires millions of gallons of water
The post Toward cheaper water treatment has been published on Technology Org.
There's a real art to making candy — and a lot of science, too. Even the simplest sugary treat is shaped by complex chemistry. Here's some of the inventive science that goes on behind the scenes of making some of your favorite sweet treats:
Atomic fireballs get their burn from the same stuff as hot peppers
Atomic Fireballs take cinnamon flavors over the edge into mouth-searing spiciness. To add some heat to their sweets, the makers of Atomic Fireballs, the Ferrara Candy Company, add a bit of a chemical called capsaicin, a little molecule that also gives hot peppers their kick. (Ferrara claims that the amount of capsaicin in Atomic Fireballs is equivalent to about 3,500 Scoville Heat Units, or the same spiciness as a jalapeno pepper.)
(More from World Science Festival: 11 small wonders captured on camera)
So what makes capsaicin so spicy? When the chemical binds to your taste receptors, it opens up channels in cell membranes that allow calcium ions to rush in — which, from your cells' point of view, is the exact same thing that happens when they're exposed to uncomfortable amounts of heat. Water won't neutralize the burn, because capsaicin is insoluble in it. Milk, on the other hand, works to take away the pain because it contains casein, a fat-loving molecule that can glom onto capsaicin's fatty tail, making it easier for the spicy molecules to be washed away.
(iStock)
Chocolate cherries get a liquid center from enzymes
There are lots of different ways of making chocolate-covered cherries, also known as cherry cordials. Some are just whole cherries coated in chocolate, while other cordials are made by placing cherries and cherry syrup in a chocolate mold that's plugged up with even more chocolate. But there's another way of making cherry cordials that gets a little more involved in chemistry.
These cherry cordials are made by coating a cherry with a sugary paste containing the enzyme invertase, which breaks down sugar, and then rolling that paste-covered cherry in chocolate. Once the cordials are made, they're stored for a couple weeks to allow the enzyme to do its work. Some of the sucrose in the cherries is broken down into the more water-soluble dextrose and fructose. "In effect, the outer part of the cherry liquefies in its own syrup, leaving the cherry center swimming in liquid," David Chisdes, a candy chemist, told the Los Angeles Times. "This explains how these succulent candies can be made without there being a hole somewhere in the coating."
(iStock)
The many transformations of sugar syrup
A lot of different types of candy can be made from a simple mixture of sugar and water. The key is in how hot you heat the mixture. Heated sugar solution passes through several candy stages, corresponding to the concentration of sugar in the mixture:
Thread stage — occurs when the mixture is heated to between 230 degrees Fahrenheit and 235 degrees F, and corresponds to a sugar concentration of 80 percent. When placed in water, this syrup forms a little liquid thread. This syrup is good for pouring over ice cream, glazing fruits, or sweetening tea.
Soft-ball stage — occurs at between 235 and 240 degrees F and corresponds to a sugar concentration of 85 percent. When dropped in water, the mixture forms a soft ball. This stage is good for making fondants and fudge.
Firm-ball stage — occurs at between 245 and 250 degrees F, with a sugar concentration of 87 percent. When dropped in water, this stage forms a ball that's still malleable but which won't flatten as much as the soft-ball stage. At this point, the mixture is good for making caramels.
Hard-ball stage — occurs at between 250 and 265 degrees F, with a sugar concentration of 92 percent. When dropped in water, this stage forms a hard ball that's still a little bit yielding if you really squish it. Marshmallows, gummies, and rock candy are made from this stage.
(More from World Science Festival: What's the real danger from solar flares?)
Soft-crack stage — occurs at between 270 and 290 degrees F, with a sugar concentration of 95 percent. When dropped in water, this stage forms threads that are flexible. Saltwater taffy and butterscotch are cooked to this stage.
Hard-crack stage — occurs at between 300 and 310 degrees F, with a sugar concentration of 99 percent. When dropped in water, this stage makes hard, brittle threads. Hard-crack stage is used to make lollipops, toffees, and brittles.
Heat your mixture beyond these stages and you will enter the realm of caramelization. The water in the mixture has been boiled off, and now there is a complicated series of reactions happening in the sugar molecules themselves. In the process, volatile chemicals are released that give caramelized sugar its luscious flavor.
The cool chemistry of rock candy
Candy chemistry isn't just dependent on how you heat up your sugar mixture; how you cool it down is important too. Rock candy is made by heating up sugar water to the hard-ball stage, then slowly cooling it for several days in order to allow huge crystals of sugar to form. Part of what allows those big crystals to grow is a fundamental chemistry concept known as Le Chatelier's principle, which basically says that when conditions are shifted inside a system at equilibrium, the system will respond in an attempt to restore equilibrium. In this case, the decreasing temperature of the sugar solution provokes crystallization.
"A decrease in temperature causes a system to generate energy, in an attempt to bring the temperature up," science writer Tom Husband wrote in an in-depth look at rock candy for the American Chemical Society. Sucrose molecules join together to form crystals and "because the formation of chemical bonds always releases energy, more sucrose molecules will join the crystal in an attempt to increase the temperature."
(iStock)
Smooth fudge is a delicate chemical process
For candies with a smooth texture, like fudge, a confectioner wants to minimize crystallization as the sugar mixture cools. Crystallization needs some "seed" to kickstart the process, a pattern for the dissolved sugar in the cooling mixture to copy, which could be a tiny sugar crystal or even a piece of stray dust. In making fudge, keeping anything that can act as a crystal nucleus out is key.
(More from World Science Festival: 5 ways good science goes bad)
"This is why most fudge recipes require that the sides of the pot be washed down early in the cooking process, either with a wet pastry brush or by putting the lid on the pan for about three minutes to remove any sugar crystals clinging to the container walls," University of Alaska Fairbanks physicist Sue Ann Bowling wrote in a piece on fudgy physics. "It is also why the recipes specify that the sides and bottom of the pan should not be scraped into the bowl where the candy is to cool. There is too much chance of scraping in a stray sugar crystal."
Fudge recipes also counteract crystallization by recommending the use of more than one kind of sugar, like corn syrup as well as table sugar. Having different kinds of sugar in the solution means they interfere with the other's crystallization process, according to Bowling. Then, when the mixture has cooled enough, the fudge is stirred rapidly to stimulate crystallization all at once, which produces a fudge with lots of tiny crystals as opposed to fewer chunks of larger crystals — creating a taste that's creamy, not grainy.
How do you decide if you can trust someone? Is it based on their handshake, the way they look you in the eye, or perhaps their body language?
We know that what someone wears has an effect on our trust in them. If you happen to be a doctor, 76 percent of us will favor you if you wear the white coat, compared to only 10 percent if you happen to just pop out in your surgical scrubs. Labels matter too. In one test, four times as many people were willing to stop and answer a survey on one day compared to another. The difference? Whether or not the interviewer had a designer label on their sweatshirt. But what if you had to decide whether or not to trust someone without knowing the gear they were togged up in? Without knowing anything about them at all?
When people fall victim to fraud, often it is because they have decided to trust a stranger. In mass-marketing fraud (known widely as the 419 scam or advance fee fraud), an unsolicited e-mail contact offers false promises or information designed to con you out of money. You may have already received an e-mail from, for example, a Nigerian prince who desperately needs your bank details in order to move some money out of the country fast. Phishing fraud, where links in carefully crafted, apparently legitimate emails redirect users to a different server, into which they are persuaded to enter usernames, passwords, or bank account details, cost the UK £405.8m in 2012, according to RSA Security.
But what makes some people laugh and delete immediately, while others are curious enough to find out more?
Playing games
A recent study led by Tim Hahn from Goethe University in Frankfurt examined people's initial levels of trust when co-operating with an unknown partner.
Sixty participants were asked to play the trust game, an extension of an experimental economics game called the dictator game for which the participants were put into pairs. Player one was given an initial amount of hypothetical "money" that they could choose whether or not to gamble with. The gamble was this: They could give their money to the stranger they were paired with, player two, and anything they gave would be tripled. Player two could then choose to give some of this money back to Player one, and again, anything they returned would be tripled — or player two could choose to keep it all.
In theory then, the more generous you are in the beginning, the richer you could become by the end. To make it more exciting, the players were told that at the end of the trust game, this notional money would be converted into real hard cash.
As player one, how much would you give away to a complete stranger? Well if you happen to have an electroencephalograph (EEG) handy, you can find out without ever needing to play. An EEG records your brain activity by measuring the electrical pulses generated by the brain's cells through a series of electrodes placed on your scalp. In this study, the researchers found that they could predict the amount of money the initial player would trust to the stranger purely based on the activity recorded by the EEG.
A state of trust
But what makes this finding even more interesting is that the EEG recording was taken several minutes before the trust game began. At this point, the staff running the experiment had not asked the participants to think about the game of trust. What the EEG recorded was the resting state of the participants' brains when not involved in tasks — relatively calm — rather than the heightened activity associated with performing mental or physical tasks.
Resting state brain activity is thought to be relatively stable over time. So the fact that the experimenters were able to predict the investment that player one would make to the stranger, player two, was purely based on this resting state activity. And it shows that initial levels of trust may be determined by an underlying pattern of brain activity.
So, returning to those who have unfortunately answered our Nigerian prince, or foreign businessman, or even opened the door to a man "from the electricity board," what this study perhaps indicates is that, regardless of the contents of the email or how convincing the con is, we are already subject to an unconscious bias as to whether or not we will trust that stranger.
Not only are some of us physically more inclined to trust strangers than others, but that susceptibility can be determined by any unscrupulous character who happens to have an EEG scanner to hand.
More from The Conversation UK...
"No tradition is more firmly established in our system of law than assuring to the greatest extent that its inevitable errors are made in favor of the guilty rather than against the innocent."
That was the message from a US federal appeals court whose first-of-its-kind ruling (PDF) Friday opens the floodgates for criminals to demand fresh DNA testing if they were convicted by inconclusive or outdated DNA testing.
The legal flap—brought by a Montana man convicted of sexually abusing a 14-year-old girl in 2006—concerns the Innocence Project Act of 2004 (PDF). The measure, hailed by the defense bar, gave criminals three years to seek DNA testing of evidence after their conviction. Under that law, the three-year statute of limitations may be extended if a convict can demonstrate that there is "newly discovered DNA" evidence.
Read 11 remaining paragraphs | Comments
Hospitalizations for heart conditions, neurological illness, and other conditions were higher among people who live near unconventional gas
The post Hydraulic Fracturing Linked to Increases in Hospitalization Rates in the Marcellus Shale Region has been published on Technology Org.
Serge Mathot with the first of the four modules that will make up the miniature accelerator (Image: Maximilien Brice/CERN)
CERN, home of the 27-kilometre Large Hadron Collider (LHC), is developing a new particle accelerator just two metres long.
The miniature linear accelerator (mini-Linac) is designed for use in hospitals for imaging and the treatment of cancer. It will consist of four modules, each 50cm long, the first of which has already been constructed. “With this first module we have validated all of the stages of construction and the concept in general”, says Serge Mathot of the CERN engineering department.
Designing an accelerator for medical purposes presented a new technological challenge for the CERN team. “We knew the technology was within our reach after all those years we had spent developing Linac4,” says Maurizio Vretenar, coordinator of the mini-Linac project. Linac4, a larger accelerator designed to boost negative hydrogen ions to high energies, is scheduled to be connected to the CERN accelerator complex in 2020.
The miniature accelerator is a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains. RFQs are designed to produce high-intensity beams. The challenge for the mini-Linac was to double the operating frequency of the RFQ in order to shorten its length. This desired high frequency had never before been achieved. “Thanks to new beam dynamics and innovative ideas for the radiofrequency and mechanical aspects, we came up with an accelerator design that was much better adapted to the practical requirements of medical applications,” says Alessandra Lombardi, in charge of the design of the RFQ.
The “mini-RFQ” can produce low-intensity beams, with no significant losses, of just a few microamps that are grouped at a frequency of 750 MHz. These specifications make the “mini-RFQ” a perfect injector for the new generation of high-frequency, compact linear accelerators used for the treatment of cancer with protons.
And the potential applications go beyond hadron therapy. The accelerator’s small size and light weight mean that is can be set up in hospitals to produce radioactive isotopes for medical imaging. Producing isotopes on site solves the complicated issue of transporting radioactive materials and means that a wider range of isotopes can be produced.
The “mini-RFQ” will also be capable of accelerating alpha particles for advanced radiotherapy. As the accelerator can be fairly easily transported, it could also be used for other purposes, such as the analysis of archaeological materials.
Read more here