Scientists at SLAC have been blowing up “buckyballs” – soccer-ball-shaped carbon molecules – with an X-ray laser to understand how they fly apart. The results, they say, will aid biological studies by improving the analysis of X-ray images of tiny viruses, individual proteins and other important biomolecules. The experiment was carried out at SLAC’s Linac Coherent Light Source (LCLS) X-ray laser, a DOE Office of Science user facility, and the results appear in the June 27 issue of Nature Communications. “It’s sort of a Catch-22: You need the X-ray laser focus to be extremely intense and bright to get a good picture,” says Nora Berrah, an experimental physicist at the University of Connecticut. “But the X-rays also trigger unexpectedly rapid and substantial damage and motion in the atoms, resulting in a blurred image.” Berrah led the research with Robin Santra, a theorist from the Center for Free-Electron Laser Science at Germany’s DESY lab. Because buckyballs are composed entirely of carbon – the backbone of all life on Earth – they are a good stand-in for biological molecules, many of which also have strong atomic bonds. They got their formal name, “buckminsterfullerene,” for their resemblance to the geodesic domes invented by R. Buckminster Fuller. Within 20
The post X-ray laser gives buckyballs a big kick has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'