Transmission electron microscope (TEM) images and GISAXS paEerns (insets) of two giant surfactant thin‐film samples. The TEM images show ordered nanoscale paEerns. Some of the most interesting and fascinating electronic devices that will someday be available to consumers, from paper-thin computers to electronic fabric, will be the result of advanced materials designed by scientists. Indeed, some remarkable discoveries have already been made. To innovate further, scientists must learn how to precisely engineer the chemical structures of materials at the nanoscale in such a way as to yield specific macroscopic properties and functions. A research group, jointly working at theNational Synchrotron Light Source, has found a new way to do just that. They have synthesized a new class of macromolecules that organize themselves, or “self-assemble,” into various ordered structures with feature sizes smaller than 10 nanometers. Called “giant surfactants,” these large molecules mimic the structural features of small surfactants (substances that significantly lower the surface tension between two liquids, such as detergents), but have been transformed into functional molecular nanoparticles by being “clicked” with polymer chains. The resulting materials are unique because they bridge the gap between small molecule surfactants and traditional block copolymers and thus possess an interesting “duality” in
The post A new approach to engineering the materials of the future has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'