Friday, 12 February 2016

Graphene leans on glass to advance electronics

more »
Scientists have developed a simple and powerful method for creating resilient, customized, and high-performing graphene: layering it on top of common glass. This scalable and inexpensive process helps pave the way for a new class of microelectronic and optoelectronic devices -- everything from efficient solar cells to touch screens.
via Science Daily

Two Black Holes Merge

more »
Just press play to watch two black holes merge. Inspired by the first direct detection of gravitational waves by LIGO, this simulation video plays in slow motion but would take about one third of a second if run in real time. Set on a cosmic stage the black holes are posed in front of stars, gas, and dust. Their extreme gravity lenses the light from behind them into Einstein rings as they spiral closer and finally merge into one. The otherwise invisible gravitational waves generated as the massive objects rapidly coalesce cause the visible image to ripple and slosh both inside and outside the Einstein rings even after the black holes have merged. Dubbed GW150914, the gravitational waves detected by LIGO are consistent with the merger of 36 and 29 solar mass black holes at a distance of 1.3 billion light-years. The final, single black hole has 62 times the mass of the Sun, with the remaining 3 solar masses converted into energy in gravitational waves.

Zazzle Space Gifts for young and old

Rosetta’s lander faces eternal hibernation

more »

Silent since its last call to mothership Rosetta seven months ago, the Philae lander is facing conditions on Comet 67P/Churyumov–Gerasimenko from which it is unlikely to recover.


via ESA Space Science
http://www.esa.int/Our_Activities/Space_Science/Rosetta/Rosetta_s_lander_faces_eternal_hibernation

CERN congratulates the discoverers of gravitational waves

A metal that behaves like water

more »
Researchers have made a breakthrough in our understanding of graphene's basic properties, observing for the first time electrons in a metal behaving like a fluid. This research could lead to novel thermoelectric devices as well as provide a model system to explore exotic phenomena like black holes and high-energy plasmas.
via Science Daily