The planet’s enormous outer ring is made up of an unusual combination of fine dust and rocks the size of soccer balls, scientists have discovered.
via New York Times
There are advances being made almost daily in the disciplines required to make space and its contents accessible. This blog brings together a lot of that info, as it is reported, tracking the small steps into space that will make it just another place we carry out normal human economic, leisure and living activities.
A brilliant new blue pigment – discovered serendipitously by Oregon State University chemists in 2009 – is now
The post Licensing agreement reached on brilliant new blue pigment discovered by happy accident has been published on Technology Org.
Researchers using NASA's Hubble Space Telescope have detected a stratosphere and temperature inversion in the atmosphere of a planet several times the mass of Jupiter, called WASP-33b. Earth's stratosphere sits above the troposphere, the turbulent, active-weather region that reaches from the ground to the altitude where nearly all clouds top out. In the troposphere, the temperature is warmer at the bottom ground level and cools down at higher altitudes. The stratosphere is just the opposite: There, the temperature rises at higher altitudes. This is called a temperature inversion, and it happens because ozone in the stratosphere absorbs some of the sun's radiation, preventing it from reaching the surface and warming this layer of the atmosphere. Similar temperature inversions occur in the stratospheres of other planets in our solar system, such as Jupiter and Saturn. But WASP-33b is so close to its star that its atmosphere is a scathing 10,000 degrees Fahrenheit, and its atmosphere is so hot the planet might actually have titanium oxide rain.
LHC operators in the CERN Control Centre during the first day of the Run 2 for physics on 3 June 2015.
In a few days’ time, the Large Hadron Collider (LHC) and its experiments will be taking a short break. This five-day breather is the first of three technical stops scheduled for the accelerator during the 2015 operating period, before a slightly longer stop during the end-of-year holidays.
Although physics data only started to be collected at the LHC on 3 June, progressive recommissioning of the machine with beam actually began on 5 April. And even at the end of 2014, the machine had already been cooled and all of its equipment had begun operating.
Restarting the LHC involves much more than just pressing a button. The accelerator is made up of thousands of components that all have to work together harmoniously and need to be retuned at regular intervals. Each year of LHC operation therefore includes five-day technical stops every ten weeks or so. The experiments take advantage of these intervals to carry out their own maintenance work.
The first technical stop in 2015 will also allow LHCf to dismantle its detectors. LHCf is one of the LHC’s three smallest experiments and operates with beams that are not very concentrated, to avoid damage to its detectors. The operators of the LHC have therefore planned a special run this week, with beams that are less dense at the collision points. The other experiments will also use this opportunity to take data, in particular to calibrate their detectors.
After this first technical stop, several days will be dedicated to the scrubbing of the beam pipes ready to increase the machine's luminosity, i.e. to increase the number of bunches of protons. The LHC will then restart for physics with more bunches overall and a greater concentration of bunches at the collision points. Physics data collection will continue until the next technical stop, scheduled for the end of August.
Cells are biological wonders. Throughout billions of years of existence on Earth, these tiny units of life have
The post Seeing the Action Inside of a Cell has been published on Technology Org.