Legendary explorers and visionaries, real and fictitious, are among those immortalized by the IAU in the first set of official surface-feature names for Pluto's largest moon, Charon.
via Science Daily
Zazzle Space Exploration market place
There are advances being made almost daily in the disciplines required to make space and its contents accessible. This blog brings together a lot of that info, as it is reported, tracking the small steps into space that will make it just another place we carry out normal human economic, leisure and living activities.
A “beam splash” event in the ATLAS detector on 6 April 2018, as part of the LHC restart. The image shows tracking-detector hits (red), and energy deposits in the electromagnetic (green) and hadronic (yellow) calorimeters. (Image: CERN)
Proton slamming has resumed at the Large Hadron Collider (LHC). Almost a fortnight after the collider began circulating proton beams for the first time in 2018, the machine’s operations team has today steered beams into collision. While these are only test collisions, they are an essential step along the way to serious data taking, which is expected to kick off in early May.
Achieving first test collisions is anything but an easy job. It involves round-the-clock checking and rechecking of the thousands of systems that comprise the LHC. It includes ramping up the energy of each beam to the operating value of 6.5 TeV, checking the beams’ instrumentation and optics, testing electronic feedback systems, aligning jaw-like devices called collimators that close around the beams to absorb stray particles and, finally, focusing the beams to make them collide.
Each beam consists of packets of protons called bunches. For these test collisions, each beam contains only two “nominal” bunches, each made up of 120 billion protons. This is far fewer than the 1200 bunches per beam that will mark the start of serious data taking and particle hunting. As the year progresses, the operations team will continue to increase the number of bunches in each beam, up to the maximum of 2556.
With today’s test collisions, the teams of the experiments located at four collision points around the LHC ring (ALICE, LHCb, CMS and ATLAS) will now be able to check and calibrate their detectors. Stay tuned for the next steps.
These images from ESA’s Mars Express show a crater named Ismenia Patera on the Red Planet. Its origin remains uncertain: did a meteorite smash into the surface or could it be the remnants of a supervolcano?