An artist’s rendering of the thickness-driven, metal-insulator transition in sub-nanometer films of a lanthanum nickelate. Nickel atoms are shown in gold, oxygen atoms in white, and lanthanum atoms in red, and metallicity is achieved in going from two to three atomic layers. Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance and other exotic properties. These possibilities have scientists excited to understand everything about these materials, and to find new ways to control their properties at the most fundamental levels. Researchers from Cornell and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick. The team, which published its findings online April 6 in Nature Nanotechnology (to appear in the journal’s May issue), includes lead researcher Kyle Shen, associate professor of physics; first author Phil King, a recent Kavli postdoctoral fellow at Cornell now on the faculty at the University of St. Andrews; Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry; and co-authors Haofei Wei,
The post ‘Exotic’ material is like a switch when super thin has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'