Saturday 12 April 2014

Optical components made of multiresponsive microgels

original post »

“Intelligent” materials that can respond to external stimuli are high on the wish lists of many scientists because of their possible usefulness in various applications from sensors to microrobotics. Canadian researchers are working with polymer-based microgels that can swell and shrink. In the journal Angewandte Chemie, they introduce tiny, stacked structures of microgels whose optical properties change in response to light, changes in pH value, or temperature. They can also detect nerve gases. Gels are cross-linked molecules that can hold a liquid within their “loops”, which makes them swell up; microgels are “small” colloidally stable gel particles. The microgels being investigated by Michael J. Serpe and his team at the University of Alberta are swollen at temperatures below 32 °C; at higher temperatures they collapse and shrink. The researchers used these materials to make small stacked structures called etalons: they enclosed a whisper-thin layer of microgel between two thin layers of gold. When the gel swells up, the two sheets of gold move farther apart, when it shrinks they get closer to each other. The optical properties of the stack change significantly as the distance between the gold layers changes, meaning that they “respond” to a change in temperature. However, the goal is to

The post Optical components made of multiresponsive microgels has been published on Technology Org.


#materials
See Zazzle gifts tagged with 'science'

No comments:

Post a Comment