Natural gas (methane) can be converted into hydrogen (H2), which is used in clean energy, synthetic fertilizers, and many other chemicals. The reaction requires water and a nickel catalyst. Methane and water molecules attach on the catalyst’s surface, where they dissociate into their atomic components. These then recombine to form different compounds like H2 and CO. Previous research has focused mainly on understanding how methane dissociates, but experimental constraints have limited research into water dissociation. Publishing in Science, EPFL scientists have used lasers to determine for the first time how specific vibrations in a water molecule affect its ability to dissociate. The experimental results were used to optimize theoretical models for water dissociation (University of New Mexico), which can impact the design of future catalysts. Methane is widely used on an industrial scale to produce hydrogen, which is used as a clean fuel and as raw material to produce ammonia used for synthetic fertilizers. The process used is referred to as ‘steam-reforming’ because it involves methane gas reacting with water steam. This reaction requires a metal catalyst that allows the molecules to dissociate and recombine efficiently. But while the details of methane dissociation have been studied for over a decade, the way water molecules
The post Breaking up water: Controlling molecular vibrations to produce hydrogen has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'
No comments:
Post a Comment