A variety of cancers are treated with the anti-tumor agent bleomycin, though its disease-fighting properties remain poorly understood. In a new study, lead author Basab Roy—a researcher at Arizona State University’s Biodesign Institute—describes bleomycin’s ability to cut through double-stranded DNA in cancerous cells, like a pair of scissors. Such DNA cleavage often leads to cell death in particular types of cancer cells. The paper is co-authored by professor Sidney Hecht, director of Biodesign’s Center for BioEnergetics. The study presents, for the first time, alternative biochemical mechanisms for DNA cleavage by bleomycin. The new research will help inform efforts to fine-tune the drug, improving its cancer-killing properties, while limiting toxicity to healthy cells. Results of the study recently appeared in the Journal of the American Chemical Society. Bleomycin is part of a family of structurally related antibiotics produced by the bacterium, Streptomyces verticillus. Three potent versions of the drug, labeled A2 , A5 and B2 are the primary forms in clinical use against cancer. Bleomycin’s cancer-fighting capacity was first observed in 1966 by Japanese researcher Hamao Umezawa. The drug gained FDA approval in 1973 and has been in use since then, particularly for the treatment of Hodgkin’s lymphoma, squamous cell carcinomas, and
The post Cutting cancer to pieces: New research on bleomycin has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'
No comments:
Post a Comment