Neutron crystallography shows this iron catalyst gripping two hydrogen atoms (red spheres). This arrangement allows an uncommon dihydrogen bond to form between the hydrogen atoms (red dots). Credit: PNNL/Liu et al 2014 Like a hungry diner ripping open a dinner roll, a fuel cell catalyst that converts hydrogen into electricity must tear open a hydrogen molecule. Now researchers have captured a view of such a catalyst holding onto the two halves of its hydrogen feast. The view confirms previous hypotheses and provides insight into how to make the catalyst work better for alternative energy uses. This study is the first time scientists have shown precisely where the hydrogen halves end up in the structure of a molecular catalyst that breaks down hydrogen, the team reported online April 22 in Angewandte Chemie International Edition. The design of this catalyst was inspired by the innards of a natural protein called a hydrogenase enzyme. “The catalyst shows us what likely happens in the natural hydrogenase system,” said Morris Bullock of the Department of Energy’s Pacific Northwest National Laboratory. “The catalyst is where the action is, but the natural enzyme has a huge protein surrounding the catalytic site. It would be hard to see what we have
The post First view of nature-inspired catalyst after ripping hydrogen apart provides insights for better, cheaper fuel cells has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'
No comments:
Post a Comment