Antoine Allanore, the Thomas B. King Assistant Professor of Metallurgy at MIT. Photo courtesy of Antoine Allanore Copper is so valuable that its theft from worksites and power substations has become a national problem. Replacing the lost copper with new metal produced by the traditional method of cooking copper sulfide ores requires a multistep process to extract the copper and produces troublesome byproducts. Antoine Allanore, the Thomas B. King Assistant Professor of Metallurgy at MIT, wants to simplify copper extraction and eliminate noxious byproducts through electrolysis. “If you look at the energy consumption of a copper smelter today, it’s enormous,” Allanore says. “They are dependent on electricity already to exist. My approach asks, why don’t we try to do 100 percent electrical, starting from the concentrate and ending with the metal product, if I can use electricity to be more efficient as well as more environmentally friendly?” In the traditional process, which still accounts for more than half of copper production, smelters roast a mixture of copper sulfide ore and oxygen. Besides copper, the process produces sulfur oxides, which are chemical precursors to acid rain. To prevent their release into the atmosphere, the sulfur oxides have to be trapped, filtered, and treated to make
The post Reinventing copper extraction with electricity has been published on Technology Org.
#materials
See Zazzle gifts tagged with 'science'
No comments:
Post a Comment