Saturday, 16 August 2014

Novel, highly-sensitive platform to detect membrane transport activity

original post »

The research group of Assistant Professor Rikiya Watanabe and Professor Hiroyuki Noji at the University of Tokyo’s Graduate School of Engineering have developed a novel platform to measure membrane transport activity with extremely high sensitivity enhanced up to 6 orders of magnitude over conventional approaches. Membrane proteins, which are located on the cell membrane, play various pivotal roles in cell functions including signal transduction and energy production. Most commercially-available medicines target membrane proteins, and in recent years research has focused on membrane transporters, a group of membrane proteins that transport substrate molecules across the cell membrane and are an optimal pharmacological target due to their physiological importance. Although quantitatively measuring the transport activity of transporters is essential to evaluate the drug efficacy, it remains difficult as current methods have low detection sensitivity and limited target applicability. To address these issues, the research group developed novel technologies including 1) high throughput formation of artificial lipid bilayer membranes with high stability and high compatibility to membrane proteins; 2) a custom-made lipid membrane chip that has more than 100,000 micro-chambers sealed with artificial lipid bilayers; 3) a method for the highly sensitive detection of membrane transporter transport activity. Using these technologies, they enhanced

The post Novel, highly-sensitive platform to detect membrane transport activity has been published on Technology Org.

 
#materials 
See Zazzle gifts tagged with 'science'

No comments:

Post a Comment