more »
Research has demonstrated laser control of quantum states in an ordinary silicon wafer and observation of these states via a conventional electrical measurement. The findings—published in the journal Nature Communications by a UK-Dutch-Swiss team from the University of Surrey, University College London, Heriot-Watt University in Edinburgh, the Radboud University in Nijmegen, and ETH Zürich/EPF Lausanne/Paul Scherrer Institute in Switzerland—mark a crucial step towards future quantum technologies, which promise to deliver secure communications and superfast computing applications.
Zazzle Space market place
Research has demonstrated laser control of quantum states in an ordinary silicon wafer and observation of these states via a conventional electrical measurement. The findings—published in the journal Nature Communications by a UK-Dutch-Swiss team from the University of Surrey, University College London, Heriot-Watt University in Edinburgh, the Radboud University in Nijmegen, and ETH Zürich/EPF Lausanne/Paul Scherrer Institute in Switzerland—mark a crucial step towards future quantum technologies, which promise to deliver secure communications and superfast computing applications.
Zazzle Space market place
No comments:
Post a Comment